Effects of HIFU induced cavitation on flooded lung parenchyma
نویسندگان
چکیده
BACKGROUND High intensity focused ultrasound (HIFU) has gained clinical interest as a non-invasive local tumour therapy in many organs. In addition, it has been shown that lung cancer can be targeted by HIFU using One-Lung Flooding (OLF). OLF generates a gas free saline-lung compound in one lung wing and therefore acoustic access to central lung tumours. It can be assumed that lung parenchyma is exposed to ultrasound intensities in the pre-focal path and in cases of misguiding. If so, cavitation might be induced in the saline fraction of flooded lung and cause tissue damage. Therefore this study was aimed to determine the thresholds of HIFU induced cavitation and tissue erosion in flooded lung. METHODS Resected human lung lobes were flooded ex-vivo. HIFU (1,1 MHz) was targeted under sonographic guidance into flooded lung parenchyma. Cavitation events were counted using subharmonic passive cavitation detection (PCD). B-Mode imaging was used to detect cavitation and erosion sonographically. Tissue samples out of the focal zone were analysed histologically. RESULTS In flooded lung, a PCD and a sonographic cavitation detection threshold of 625 Wcm- 2(pr = 4, 3 MPa) and 3.600 Wcm- 2(pr = 8, 3 MPa) was found. Cavitation in flooded lung appears as blurred hyperechoic focal region, which enhances echogenity with insonation time. Lung parenchyma erosion was detected at intensities above 7.200 Wcm- 2(pr = 10, 9 MPa). CONCLUSIONS Cavitation occurs in flooded lung parenchyma, which can be detected passively and by B-Mode imaging. Focal intensities required for lung tumour ablation are below levels where erosive events occur. Therefore focal cavitation events can be monitored and potential risk from tissue erosion in flooded lung avoided.
منابع مشابه
Towards FUS lung cancer ablation: the lung flooding process from a physiological and physical view point
Background/introduction Unilateral lung flooding replaces air with saline in lung parenchyma. It has been shown, that in flooded condition ultrasound guidance and HIFU ablation of central lung cancer tissue is feasible. The flooding process generates a saline-lung compound which is different than known parenchymal tissue. Complete understanding of the flooding process is essential for its imple...
متن کاملFlooded Lung Generates a Suitable Acoustic Pathway for Transthoracic Application of High Intensity Focused Ultrasound in Liver
Background: In recent years, high intensity focused ultrasound (HIFU) has gained increasing clinical interest as a non-invasive method for local therapy of liver malignancies. HIFU treatment of tumours and metastases in the liver dome is limited due to the adjacent ultrasound blocking lung. One-lung flooding (OLF) enables complete sonography of lung and adjoining organs including liver. HIFU li...
متن کاملAcoustic Cavitation Enhances Focused Ultrasound Ablation with Phase-Shift Inorganic Perfluorohexane Nanoemulsions: An In Vitro Study Using a Clinical Device
Purpose. To investigate whether acoustic cavitation could increase the evaporation of a phase-shift inorganic perfluorohexane (PFH) nanoemulsion and enhance high intensity focused ultrasound (HIFU) ablation. Materials and Methods. PFH was encapsulated by mesoporous silica nanocapsule (MSNC) to form a nanometer-sized droplet (MSNC-PFH). It was added to a tissue-mimicking phantom, whereas phospha...
متن کاملHigh speed observation of HIFU-induced cavitation cloud near curved rigid boundaries
This paper focuses on the experimental study of the influence of surface curvature to the behaviour of HIFU-induced cavitation cloud. A Q-switched ruby pulse laser is used to induce cavitation nuclei in deionized water. A piezoelectric ultrasonic transducer (1.7 MHz) provides a focused ultrasound field to inspire the nucleus to cavitation cloud. A PZT probe type hydrophone is applied for measur...
متن کاملPii: S0301-5629(01)00444-6
Using platelet-rich plasma, we investigated the effect of 1.1-MHz continuous wave high-intensity focused ultrasound (HIFU) on platelet activation, aggregation and adhesion to a collagen-coated surface. Platelets were exposed for durations of 10–500 s at spatial average intensities of up to 4860 W/cm. To avoid heating effects, the average temperature in the HIFU tank was maintained at 33.8 4.0°C...
متن کامل